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Encounter Detection

e Why we do it...

e How we do it...

e Automatic systems
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Target plane methods
Linear encounter analysis
Nonlinear approaches

Pathological Cases
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Why Bother?

SR S s

® Object detection does not imply collision
warning.

® Monitoring along only the nominal trajectory
is inadequate

® Warning time is crucial to mitigation
effectiveness.
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Pre-1990’s: (")pik theory, linear theory, Monte Carlo as an abstract concept.

Shoemaker-Levy 9 (1994): Linear theory utilized and Monte Carlo approach
successfully tested.

1997 XF . (March 1998): Linear theory sufficient to exclude 2028 impact, return
problem proposed to deal with later encounters.

1999 AN, (March 1999) : New theory based on understanding of resonant and

nonresonant returns, experiments with new sampling methods. First potential impact
using all data available, discovered and verified.

1998 OX, (June 1999): First lost potential impactor.

Automatic Monitoring: Prototype running at Univ. of Pisa for 1 year has detected
numerous potential impactors, but completeness unknown. More advanced systems
presently under development at JPL and Pisa.
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Target Plane Analysis

® b-plane (Opik plane) |
Asymptotes/

/
f
/
/

® Orthogonal to incoming asymptote.

® Preferred for low velocity
encounters.

® Hides gravitational focusing.

® Impact plane (Modified TP)

® Orthogonal to geocentric velocity at ,
perigee. Impact plane

® Only option for temporary capture
encounters. b-plane,
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Target Plane Coordinates

R
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® The coordinates on the target ¢ |
plane are arbitrary, but it is L rojection 07 ,
revealing to align with the velocity

heliocentric velocity of the Earth.

® Then we have the MOID, and
the time error as the
coordinates.

® MOID (Minimum Orbital |
Intersection Distance) is the
minimum distance between the
two orbital ellipses.
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Linear Encounter Analysis

Start with orbital uncertainty at epoch of
observations (6- D ellipsoid).

Propagate trajectory with variational
equations to the target plane.

Map uncertainty onto target plane (2- D
ellipse).

Compute impact probability by
integrating the intersection of the Earth
and the PD on TP.

Nominal trajectory must pass close to
Earth, and uncertainty on TP must be
small enough.

Element Space

Probability
Density

\

Target Plane
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Limitations of Linear Approach
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° The linear approach is generally adequate for...

e Very near-term encounters with weak orbit determination.

e Far-future encounters with well-determined orbits
(if the trajectory is smooth enough).

e The linear analysis will be unreliable when...

e There is a long propagation to the encounter. Nonlinearity induced
from intervening encounters (and from Keplerian motion) can
produce crazy results.

e Orbit determination is poorly constrained: Initial ellipse becomes a
"panananoid” when any axis grows very long.
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1998 OX4 Banananoid

Nonlinearity of the 1998 OX4 orbit determination Nonlinearity of the 1998 OX4 orbit determination
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e | OV sampling or "Multiple
Solutions Method"

Line of Variations Sampling

R

2) Constrained
Differential
Corrections

Sample the backbone of the
ellipsoid by "following the river."

Provides 1-D sampling space,
but information about the width
of uncertainty is lost.

Simplifies TP analysis because
different dynamical routes to the
encounter are easy to
distinguish.

1) Follow
weakest
eigenvector
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Monte Carlo Methods

S—
S

T

° Careful sampling of the elements at epoch IS necessary if
the linear approach is inadequate. Two Monte Carlo
methods are available:

1) Sampling in element space.

e Assumes linearity (ellipsoid) in the orbit determination, but fully accounts
for nonlinearity in propagation.

e Sufficient unless orbit is very poor.
2) Sampling in observation space

e Fully models all nonlinearities, but differential corrections for every
sample is less efficient.
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1997 XF” Monte Carlo Study

............

1997 XF11

® Monte Carlo propagation |
with 500 points based on ‘

"88-day arc."

® Linear ellipsoid in
Cartesian space at
epoch of observations is
a few Earth diameters in
length.

® Ellipsoid is disrupted by
encounter in 2028,
leading to collision in .
2040 1998 Mar 30 /’j ChodasiPL{Caltech

.....................................................................................................................................
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1997 XF11

Chodas/JPL{Caltech

2028 Oct 26.711



1997 XF11
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1997 XF11
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1997 XF11
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1997 XF11
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1997 XF11

+ '.\
\)-
i
1
+ H
. :
. M
S
. 2
H
t i
- "‘
+ E
. H
. H
/
i
*
.
%
A
%

Chodas/JPL{Caltech
2040 Oct 26



Resonant Returns

R

o

1999 AN 10 after the 2027 encounter T T ! T l T
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Complex Target Plane Analysis

e Consider a "Virtual Shower" 0t
from 1998 OX4 as an example.
e 20 LOV points intersectthe TP~ | *. "~ |
within 0.1 AU in Jan. 2046:
e 2 ordinary returns _ N e
e 1 interrupted return .
of Neew, e :
e 1 singleton
e 1 sparse collision return
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zeta, Earth radii

2001 AV43 close approach in Nov/Dec 2029
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Automatic Monitoring Systems

Hazard Rating - All NEA’s
T T T T I

+  Muitiple Opp.

® Discovery of first lost potential impactor

led to recognition of need for Region of nfrest SingleOpp._;
continuous monitoring (1998 OX4).
® Monitoring requires a hierarchy of
automation: . __
1) Observation files (updated several times e ]
daily)
ClL ;
2)  Orbit Determination (when observations R AT ]
+ . +
changes) ji + j:_: o . ;
: Pt w K
3) Linear Search (as far into future as S ey EE o _
feasible) *1%5@ v T
+ +
4)  Nonlinear Search (;:ls necessary, based P Tz Tes T e o5 a5 07 o8 s
on queuing system
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completeness and confidence.

CLOMON (University of Pisa)

Detected dozens of "Virtual Impactors"” in first year of operation.

Based on Impact Plane analysis along LOV (plus Newton’s method).
"Mostly" complete for impacts with [P>1075,

System has led to improved understanding of pathological cases.
Several important improvements are in progress or planned.

Sentry (Jet Propulsion Laboratory)
Based on b~plane analysis with hybrid LOV/Monte Carlo approach.
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Presently under development and testing. Should be fully operational by fall 2001.
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